MINIMAL ROTATIONALLY-INVARIANT BASES FOR
HYPERELASTICITY

GREGORY H. MILLER*

Abstract. Rotationally-invariant polynomial bases of the hyperelastic strain energy function
are rederived using methods of group theory, invariant theory, and computational algebra. A set of
minimal basis functions are given for each of the 11 Laue groups, with a complete set of rewriting
syzygies. The ideal generated from this minimal basis agrees with the classic work of Smith and
Rivlin (T. Am. Math. Soc., 88, 1958). However, the structure of the invariant algebra described
here calls for fewer terms, beginning with the fourth degree in strain, for most groups.
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1. Introduction. In 1958 Smith and Rivlin [20] derived a set of so-called “in-
tegrity bases”: a finite set of homogeneous polynomial functions of the strain, unique
to each of 11 sets of symmetry groups (the Laue groups) which govern the symmetry
of the strain energy function. These invariants were derived using theorems for the
invariants of permutation groups (e.g., Weyl [25]). By “basis” it is meant that any ar-
bitrary symmetry-invariant polynomial may be rewritten as a polynomial in these ba-
sis functions. Since the number of invariant homogeneous polynomials is unbounded,
the discovery of a finite basis makes the problem of hyperelastic constitutive modeling
tractable (and, indeed, far simpler than constructing a symmetry-invariant function
as an expansion in symmetry-correct fourth— and higher-order elastic constant ten-
sors). The integrity bases are particularly important for modeling time-dependent
large deformation solid mechanics. Examples of computational methods requiring
properly invariant hyperelastic descriptions include [15, 16, 14].

Since the important classification by Smith and Rivlin, a number of significant
advances have been made in computational tools for algebra, in particular the theory
of Grobner bases, which has opened powerful new approaches to the study of group
invariants (e.g., [24]). In this paper the elastic integrity bases are rederived using
these new algorithmic approaches. The main point of this paper is to reexamine the
invariant structure of hyperelastic materials using these modern methods. It will be
shown that the integrity bases of Smith and Rivlin are correct in the sense that their
integrity bases are finite bases which generate the correct invariant polynomial ideals.
However, for most symmetry groups a number of syzygies exist which interrelate
the invariant basis polynomials, and therefore their bases are not minimal (syzygies
and minimality are described in this context in, e.g., [22]). It will be shown that for
most groups, beginning at degree 4 in the Cauchy tensor (equivalently the Lagrangian
strain tensor), the Smith and Rivlin integrity bases imply the existence of unnecessary
polynomial terms.

In §2 properties of the strain energy function are reviewed. This section sets the
thermodynamic context for subsequent more mathematical sections, and identifies the
Cauchy tensor as a the key fundamental variable controlling hyperelasticity. In §3 the
group theoretical properties of the 32 crystallographic point groups are described as
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they relate to the Cauchy tensor. §4 extends group theory to describe the algebraic
structure of polynomial invariants of each group. Algebraic algorithms are described
briefly in §5, and used to construct a complete set of invariants. Simplifying relations
amongst these invariants, syzygies, are described in an Appendix. A complete set of
“rewriting syzygies” are presented with which one could cast an arbitrary invariant
polynomial into a minimal form. Select syzygies are also presented which demonstrate
the algebraic dependence of “secondary invariants” upon the “primary invariants”.
Concluding remarks are made in §6.

2. The Strain Energy Function. The fundamental kinematic variable that
governs hyperelasticity is the deformation tensor

Oz,

Fop= —2
A 0@5

(2.1)
which describes the deformation of a spatial (Eulerian) frame x with respect to a
material (Lagrangian) frame a. The internal energy &£ is some function of the 9
components of F', entropy S, and possibly other material constitutive parameters:
E=E(F,S).

Since the internal energy is a scalar function, its value must be independent of the
reference frame of the observer. Thus, an observer utilizing a reference frame & will
interpret the laboratory reference frame x rotated through an arbitrary orthogonal
rotation Q (Q~! = QT) and translated by an arbitrary vector Zg :

& =20+ Qu (2.2)
F=QF. (2.3)

The possibly time-dependent translation Z is independent of the material reference
frame {a} and therefore does not affect the observer’s deformation tensor F. In the
observer’s frame, the internal energy would be E=¢ (QF,S). And so, for the internal
energy to be independent of the reference frame of the observer, the function must
depend not on the components of F' individually, but upon some combination of them
that removes the dependence on Q.

One way of removing the @)-dependence is to factor F into a matrix of pure
stretches and a matrix of rotations. The so-called right-polar decomposition of F' is

F = RU, (2.4)

where R is a rotation (R~! = RT), and U is symmetric. This decomposition is unique,
with

UTU = FTF =FTQTQF = FTF. (2.5)

Instead of solving (2.5) for the 6 independent components of U, one might use directly
the 6 independent components of C' — the Cauchy tensor (or, “right Cauchy-Green
tensor”)

C=F"F (2.6)

£=E£(C,S). (2.7)

These manipulations determine the functional dependence of the internal energy
in such a way as to make the result independent of the reference frame of an observer.
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The Cauchy tensor remains, however, dependent upon the orientation of the mate-
rial with respect to the material reference frame a. For crystals with no rotational
symmetry, this result is adequate, and one may without loss of generality construct
hyperelastic equations of state (2.7) that are consistent with all symmetry constraints.

There are 230 space groups that classify the symmetry of single crystals. These
are based upon 32 crystallographic point groups, which derive from consideration
of rotations and reflections (reflections may also be referred to as improper S; ro-
tations; collectively such operations will be called simply “rotations”), and become
230 upon consideration of translations consistent with the rotational symmetry. To
discuss rotational invariance it is sufficient to consider the point groups. Of these 32
point groups, only two (C; and C;) are correctly modeled by (2.7) without additional
considerations of symmetry. The remaining 30 point groups classify materials which
are symmetric with respect to certain discrete symmetry operations 7 on the atomic
coordinates in the material reference frame:

a=7"'a (2.8)
F=F7x .
C=rl0or. (2.10)

For the internal energy to be invariant with respect to each of these discrete rotational
mappings, one must have

E=¢&C,S)=EFTCr,S) Vrel©, (2.11)
where re represents the set of rotation operations of the crystallographic point group
G of the material (the symbols 7, T', G, etc., are used here to describe the group
properties in the R? coordinate space; the symbols 7, ', G, etc., will denote the cor-
responding extension of these group properties to the R® space of the unique Cauchy
tensor elements).

3. Group Theory. The crystallographic point groups may be described by a
finite number of 3 x 3 matrices which rotate a vector, reflect it across a plane, or
combinations thereof. The set T' of these matrices 7 are a representation of a group
algebra (7, which means (1) multiplication is associative, (To7g)7T = 7o (7g7,) for
each 7., 73,7, € [; (2) that for each 7, 7g € T, the product 7,73 is also contained
in I'; (3) there exists an identity E € I such that E7, = 7, E = 7, for each 7, € [
and (4) for each 7, € T, there exists an inverse 7! such that 7,7,! = E.

One may use the property (2.10) to construct a set of 6 x 6 matrix operators m;

=2

=2

=2

7T11 7T21 7T31 27?317?21 27?117?31 27?117?21
o M5y T3y 299730 273912 2T99T12
— 777%73 777373 777;%73 ) 7277337_[237 ) 727733777137 ) 727723777137
M12T13 T22M23 T32T33 To2M33+T32Ma3  M12733+T32M13  T12T23+ 22713
M11713  T21M23 T31733 T21M33+7T31M23 M11733+T31M13 11723 +T21713
M11T12  T21T22 T31T32 T21M32+7T31M22  T11732+T31M12  T117T22+ 721712

(3.1)

that transform the 6-dimensional vector n = (Cy1, Caz, Cs3, Caz(= Cs2), C13(= Cs1),
Ci2(= C1))%, or in Voigt notation (Cy,Ca, C3,Cy, Cs, Cs)T according to

n=mn.

(3.2)
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In the language of Murnaghan [18, Ch. 3|, the matrices 71 are symmetrized Kro-
necker products of the transformation matrices #7. The d-form matrices 7y intro-
duced below, are symmetrized Kronecker d-powers of the transformations 7.

Note that the set I' of matrices 7y, formed from the elements # € T' of group
G, define a group algebra G that may be different from G (e.g., [8]). In particu-
lar, the transformation matrices (3.1) effectively introduce inversion symmetry where
none may have existed in the original group. Thus, as with Laue diffraction, the 32
crystallographic point groups reduce immediately to the 11 Laue groups.

A linear combination k of elements of the Cauchy tensor is invariant to all sym-
metry operations if for each m; € I' one has k = mk; thus k must be an eigenvector
of each matrix m; with eigenvalue 1. Or,

Kk = Pgrk (3.3)
with
1
Pr=r Y m, (3.4)
Tl A=

and |T'| the cardinality of the group. Pg is the Reynolds operator, a special case of the
more general symmetry projection operator which projects a vector onto an irreducible
representation of the group (e.g., [6, Ch. 6]). The Reynolds operator projects a vector
onto the unique totally symmetric representation. Pg is a projection, P> = Pr by
virtue of the property of groups that m,I' =T for all 7, € I'. Consequently, the
eigenvalues of Pr are all either 0 or 1. And, therefore, the number Ny of linearly-
independent degree-1 invariant vectors is given by the number of unity eigenvalues of
Pr, which is equal to the trace of Pg:

Ny = trace(Pg) = |F| Z trace(my) (3.5)

To evaluate this equation for any group, one tabulates the symmetry operations by
type (Table 3.1 displays the operations of each group, and their assumed orientation
with respect to the assumed orthogonal Lagrangian coordinate system a). The num-
bers of symmetry operations 71, by type and group I', are given in Table 3.2. The
traces may be calculated from the eigenvalues listed in Table 3.3.

Invariants of higher degree lie in the (6+371)—dimensional space formed by the
unique combinations of degree-d monomials (e.g., a basis for degree-2 monomials is
given by the 21 homogeneous terms C;C}>; in a process analogous to that described by
(3.1)). From the matrices 71, so-called d-form matrices w4 may be constructed easily
to represent the action of the symmetry operations on the degree-d terms. The number
Ny of linearly-independent degree-d symmetry-invariant terms are constructed as in
the degree-1 case with

R,d |F| Z Td, (36)

g€l

Ng = trace(Pr,q) |F| Z trace(mq). (3.7)
wq€l
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TABLE 3.1
Settings for those crystallographic point groups with planes and azes (Wulff stereographic pro-
jections). Bold lines are mirror planes. Open and closed circles are general positions, above and
below plane z = 0 respectively. Closed symbols with n—fold symmetry are rotation azes, mized
open-closed symbols with n—fold symmetry are improper rotations.

In practice it is not necessary to actually create the matrices m4. The eigenvalues
of the d-form matrices 74 are Xfl e )\g"’, with \; representing the i*" eigenvalue of 7y,
and with the exponents d; subject to di + - -+ + dg = d. Therefore,

trace(my) = Z A\, (3.8)
di1+--+de=d

For completeness, one has also the scalar degree-0 term: the number ‘1°. This
polynomial invariant of degree 0 is generated by my = 1, whence Ny = 1.

Via the projections Pr 4 group theory provides a method for the construction of
all linearly-independent degree-d symmetry-invariant homogeneous polynomials. The
number of such polynomials is unbounded, however, since for any degree d the number
of terms is at least as large as (N ! tld_l) — the number of distinct degree-d polynomials
formed from by multiplying together different combinations of degree-1 polynomials.

A finite polynomial basis, a set of invariant polynomials from which all others may
be constructed, exists. The number of terms in this basis, and some properties of it,
are provided by theorems of invariant theory described below. The construction of the
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Group I |F| E,I CQ,J CB;SG 04,54 06753

C1,C; 1 1

Cs,Co, Cap, 2 1 1

Cav, D2, Doy, 4 1 3

S4,Cy, Cyp 4 1 1 2

D2q,Cay, Dy, Dy 8 1 5 2

T, Ty 12 1 3 8

Ty, 0, Oy 24 1 9 8 6

Cs, Sg 3 1 2

Csy, D3, D3g 6 1 3 2

Csp, Cs, Con, 6 1 1 2 2

Dsp, Cev, D, Do, 12 1 7 2 2
TABLE 3.2

Number of distinct occurrences of operations m in the crystallographic point groups, in the RS
space of the Cauchy tensor. The symbols used here are Schoenflies notations: E is the identity, I
is inversion on all 8 orthogonal azes, Cyp is an n—fold rotation, Sy, is an tmproper n—fold rotation,
and o = S1 is a mirror reflection.

Operator m;  Eigenvalues

E I 1 1 1 1 1 1

Cy o 1 1 1 -1 -1

C3 Sg 1 1 % B % %

Cy Sy 11 -1 -1 e? e %

Cs S3 1 1 eF e % e e 5
TABLE 3.3

FEigenvalues of the point group operators m in the space RS of the Cauchy tensor.

actual invariant polynomial bases is accomplished with the Grébner basis methods of
computational algebra, described in the subsequent section.

4. Invariant Theory. The Hilbert series ®(z) (also known as Poincaré’s series)
is a polynomial in the dummy variable z where the coefficient of 2™ is the number
of polynomial invariants of degree n. Spencer’s generating functions [21], used in the
study of invariants in continuum mechanics, are particular instances of the Hilbert
series constructed by different means than employed here. Following Sturmfels [24,
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Theorem 2.2.1] after [17]:
O(z) = Z Nyz?
d=0

o0
LSS Y s

meld=0di+---+de=d

1 oo
D S

meldy, - ,deg=0

=37 2 IT ez +--)

mieln=1

1 0 1
:mz H(l_)‘nz)

Tl n=1

1 1
_ - 4.1
T XG:F det(I —m12) (4.1)
™

where Ao = Ao (1), and where one assumes that |z| < 1.

By means of this result, it is apparent that the Hilbert series for a given crystallo-
graphic point group may be algebraically constructed by summing factors 1/det(I —
71 2) corresponding to the individual operators 71 that occur in the point group. These
factors are summarized in Table 4.1.

Operation m; Hilbert Series Contribution
B, o
1 1
Cz,0 T-23(1t2)2 ~ (T-2)2(1-22)
Cs, S, ! =1
3,196 (1—2)2(1+z+22)2 — (1-29)2
.. S 1 — 1
4504 (1—22)2(1+22) — (1—-=22)(1—2%)
Cs, S L = )
6,93 (0=22(—2z+22)(I+2+2%) _ (1-2)(1—2%)

TABLE 4.1
Contributions of point group operators to the Hilbert series.

One may then construct the Hilbert series according to the formula

_i N(E,I) N(CQ,O') N(Cg,Sﬁ)
ST =20 =222 (1 28)2

Or(z) +

N(Cy, Sy) N(Cs, S3)(1 + 2)
07" 0-290- 9

(4.2)

where N (,...) is the number of occurrences of symmetry operators =, ... € T, tabu-
lated for the crystallographic point groups in Table 3.2.

Finite groups have the Cohen-Macaulay property of commutative algebra (e.g.,
[23]), which has significance for this project in that it implies that certain important
properties of the invariant group algebra may be deduced by appropriate factorizations
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of the Hilbert series, called ‘Molien functions’ or ‘Hironaka decompositions’:

Yicg 2

A )

(4.3)

The interpretation of these factorizations is that there exist n primary invariants
6 which comprise an “homogeneous system of parameters” (HSOP), with degrees d; =
deg(6;), and where n is the number of variables (6 for the Cauchy tensor elements).
These are represented in the denominator of the Molien function. Since a factor
1/(1—2%) contributes (multiplicatively) 1+2z%+22%4 2394 .. to the Hilbert series, these
factors are unrestricted in a polynomial representation. The numerator represents the
t secondary invariants ¢, with degrees e; = deg(¢;) and cardinality

1 n
t= I I1¢ (4.4)
1=1

including the degree-0 term ‘1’. Since factors z¢ in the numerator contribute only z¢
(multiplicatively) to the Hilbert series, the implication is that these factors occur at
most once in a polynomial representation.

Groups I' Molien function
triclinic 1

C1, C; (1-2)°
monoclinic 1422

Csv CQ; CQh (172)4(1722)2
orthorhombic 1423

Cay, D2, Doy (1—2)3(1—22)3
tetragonal 14224423424 425

Sy, Cy, Can (1=2)?(1=22)3(1—2%)
tetragonal 14223426

D24, Cuyp, D4, Dap (1-2)3(1-22)3(1-2%)
cubic 143234224 42254326427
T, Ty (1-2)(1-2%)%(1-2%)%(1—2%)
cubic 14234 24425426427
Tu, O, Oy (1-2)(1-2%)%(1-2%)%(1-2%)
trigonal 1422246234224+ 26
Cs, Sg (1—2)2(1—22)2(1—23)2
trigonal 14224223424 425
Csy, D3, D (1-2)*(1-2%)2(1-2%)?
hexagonal 143234224 42254326427
Csn, Cs, Con (1-2)2(1-22)2(1-2%)(1-2%)
hexagonal 14234244254 254-2°

Dayp,, Cey, D¢, Dg, (1—2)%(1—2%)2(1-23)(1-29)

TABLE 4.2
Molien factorizations of the Hilbert series of crystallographic point groups in the RS space of
the Cauchy tensor

A consequence of the Molien function is that all symmetry invariant polynomial
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functions P of the Cauchy tensor may be expressed in the form

P({0},{¢}) = Z% {0} (4.5)

where P, ({0}) is an arbitrary polynomial in the primary invariants, and where each
secondary invariant ¢, occurs at most once. For all groups henceforth let ¢g = 1, and
consider only nontrivial secondary invariants.

Molien factorizations of the crystallographic point groups, constructed using (4.2)
for the invariants of the Cauchy tensor terms, are given in Table 4.2. These functions
are fully reduced in that there is no common algebraic factor to both numerator and
denominator, and in this sense the implied size of the invariant set in minimal. These
factorizations are not unique. For example, the factorization displayed for group
C5, implies primary invariants of degree 1,1,1,2,2,2, and one nontrivial secondary
invariant of degree 3. However, multiplication of numerator and denominator by
(1+ 2) gives the function

142422424
1 22(1 22

(4.6)

implying primary invariants of degree 1,1,2,2,2,2 and three nontrivial secondary
invariants of degree 1, 2,4. If the form given in Table 4.2 exists, then the alternative
form (4.6) is not minimal. The question of existence must be settled by constructing
the algebraically independent basis functions of the group, and partitioning them into
primary and secondary invariants (e.g., [19, p. 101]). It will be shown that HSOPs of
the degrees indicated by the reduced functions in Table 4.2 exist.

Since secondary ¢, is an invariant, so too is ¢2. However, ¢2 is not represented
in the Hilbert series. Thus, the invariant ¢2 must be expressible by some polynomial
of the form (4.5). This implies the existence of syzygies — polynomial equalities that
relate the secondary and primary invariants. A set of syzygies may be found to serve
as “rewriting rules” for systematic conversion of a general polynomial P({6},{¢})
into the minimal form given by the right hand side of (4.5).

An HSOP is a minimal set of algebraically independent polynomials, with cardi-
nality 6 equal to the number of independent variables in C'. There cannot be more
algebraically independent homogeneous polynomials, and so any additional polyno-
mial (in particular, the secondary invariants) must possess an algebraic dependence
upon the primary invariants. The algebraic relations expressing a particular secondary
invariant in terms of the primary ones are also expressible as syzygies.

The 6 primary invariants of each crystal point group are therefore algebraic (vs
polynomial) invariants: all polynomial invariants are expressible as algebraic functions
of the primary invariants. This settles a conundrum regarding the number of degrees
of freedom. The elastic Cauchy tensor has 6 degrees of freedom, and there are 6
algebraic invariants. The additional apparent degrees of freedom represented by the
number of secondary invariants (aside from the trivial one, 1, of degree zero) are a
consequence of assuming a polynomial form for the invariant energy function.

5. Computational algebra: Grébner bases. In R? the space of material
coordinates a, and in R®, the space of Cauchy tensor components, some matrix op-
erations of the groups (e.g., corresponding to rotations through 27/3) contain fac-
tors of v/3/2. However, polynomials generated through the Reynolds operator con-
tain only integer coefficients, so it is sufficient to study the properties of Q[C], the
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ring over rational numbers Q of polynomials in the Cauchy tensor elements C. Let
F = {filfi € Q[C], fi = Prfi} be some set of invariant polynomials. The ideal
generated by F', I(F') is the set of all polynomials p1 f1 + p2fa+ ..., p; € Q[C] that are
dependent on elements of F: i.e., g € I(F) and h € Q[C] implies that gh € I(F), and
g, f € I(F) implies that g+ f € I(F). The objective is to construct the smallest basis
F consisting of homogeneous invariant polynomials, with degrees consistent with the
Molien function of the group, such that I(F) is equal to the complete invariant ideal
I(Q[C]F) (see e.g., [23, 4] and [3] for algebra concepts, and the latter also for Grobner
bases).

Algorithms designed to address this problem require the capability of deciding
whether some polynomial f is in the ideal I(F'). The solution is to construct a special
basis GB(F'), the Grébner basis, with I(GB(F')) = I(F'). That is, GB is an alternative
basis that generates the same ideal as F'. The key property of a Grébner basis is that
for any f € I(F), f—gp 0: f is reducible to zero by successive steps of a Euclidean
reduction algorithm. The reduction property is linked to a notion of term order: a
unique reduced Grobner is specified by the basis F, and a specification of the term
order >.

Group theory shows how, using the Reynolds operator, invariant polynomials may
be generated, and from the Molien function one has an idea of what the degrees of
primary and secondary invariants may be. Given a set of 6 homogeneous polynomial
functions with degrees that are compatible with their being primary invariants, the
first task is to show whether or not they are an HSOP. An algorithm for this task
is given by Sturmfels [24, algorithm 2.5.3]. First, one uses the Reynolds operator
to generate a set of homogeneous polynomial invariants 6’(C') of the Cauchy tensor
elements. Next, construct a polynomial basis set F = {6} — y1,...,05 — ys} in the
variables C' and new slack variables y, with lexicographic order C; > ... > Cg > y1 >

. > yg. This is an “elimination order” that systematically eliminates terms in C
from the head of each polynomial in the basis during construction of the Grébner
basis (the head term is the greatest with respect to the specified order; lexicographic
in this case). Generate the Grébner basis GB(F). Let GB' = GB(F) N Q[y] be the set
of polynomials found in GB(F') containing only variables y. If GB' = (), then {0’} are
algebraically independent: they may be chosen to comprise the HSOP of the group.
If GB" # ), then the functions contained in GB' represent polynomials equations
P(y1,y2, ..., ys) = 0 which represent syzygies amongst the variables y; hence amongst
the functions ¢’. This property will be exploited to determine syzygies.

The second task is the determination of secondary invariant polynomials [24, al-
gorithm 2.5.14]. Begin with F' = {0}, the set of primary invariants, and let ¢ = 0
be the set of discovered secondary invariants. Compute GB = GB(F') with respect
to any valid term order. For each degree indicated in the numerator of the Molien
function, use the Reynold operator to construct a set of linearly independent homoge-
neous invariants. Those candidate polynomials ¢’ that reduce to zero with GB have a
polynomial dependence on {#} and are not valid secondary invariants. Those ¢’ that
do not reduce to zero are secondary invariants; ¢ := ¢ U {¢'}.

To deduce rewriting syzygies, i.e., syzygies of the form ¢;¢; = po + >, pPror,
p; € Q[0], another algorithm based on Grébner bases has been proposed [24, algorithm
2.5.6]. One computes the Grébner basis of F = {61 — y1,...,06 — Y6, 1 — 21...} in the

INote that the Reynolds operator does depend on the “setting”, or orientation, of the symmetry
axes, given in Table 3.1. To this point in the manuscript, only the setting-independent eigenvalues
of the operations have been used.
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variables C' and slack variables y and z. Sturmfels recommends the variable order
Ci >...>C¢ >y1 > ... >ys > 21 > ..., and suggests the following term order
>=. Term C%y°z7 » Ca'yﬁl,ﬂ' if C* > C* in the purely lexicographic order, or
if C* = C* and y? > yﬁl in the degree lexicographic order, or if C* = C* and
Yy’ = yﬁ/ and z7 > 27" in the purely lexicographic order. The resulting Grobner basis
will contain the desired syzygies.

To compute syzygies relating one secondary invariant ¢, to the primary invariants,
essentially the same procedure is employed. The Grobner basis of F' = {61 —y1, ..., 06—
Y6, @i — 2} is computed in the variables C; > ... > Cs > y1 > ... > yg > 2z with an order
that eliminates the variables C'. Good success was found using a matrix order (e.g., [9])
that first selects for graded degree (using the degrees in C' as weights), then selects for
degree in the variables C', and then which enforces reverse lexicographical ordering on
the C and y blocks. As suggested by Bayer and Stillman [2] the reverse lexicographical
refinement was substantially more efficient than using purely lexicographical order.

The construction of Grobner bases is given by a simple algorithm by Buchberger
[5], but the simplicity of the algorithm belies the complexity of the computational
task. The maximum degree computed in a Grobner basis may be as large as doubly
exponential in the number of variables used [13]; and integer or rational coefficients
have been reported to contain as many as O(10°) significant decimal figures with basis
functions containing O(1) coefficients [1]. Thus, poor algorithmic choices (and there
are many choices one is free to make) render even simple basis calculations impossible.
To control these issues directly, implementations of Buchberger’s algorithm and the
F, variant of this algorithm by Faugére [7] were constructed in C++ using GMP
[12] to represent and manipulate arbitrary precision integers. Superfluous pairs were
eliminated using the method of Gebauer and Moller [10], and selection strategies
used the “sugar” phantom degree order method of [11]. The Fj algorithm has been
reported to be on the order of 10x faster than the equivalent Buchberger method.
Our implementation of Fy modifies the selection criterion as follows. Let degy, be
a W—graded degree, chosen so all polynomials are W-homogeneous (e.g, weights w;
correspond to the degree of a variable when expressed in the common basis of C
elements). An Fj row echelon calculation containing polynomials of different degy,
may be immediately block diagonalized according to degy,. Including polynomials
of different degy, in a row echelon calculation does not affect the correctness of the
method, but in practice it is found that selecting only those pairs whose degy, are
equal and as small as possible improves efficiency.

The results of these algorithms applied to the 11 Laue groups are presented be-
low. The following subsections present the computed invariant bases, with elements
distinguished as being primary or secondary invariants. In all cases the minimal fac-
torizations displayed in Table 4.2 are realized. In the Appendix, a complete set of
rewriting syzygies are presented. Application of these equations may transform any
polynomial P({6},{¢}) into the minimal form given by (4.5). These are offered in
proof of the simplification implied by the Molien factorizations. Also presented in the
appendix is a representative example of an algebraic dependence syzygy; a polyno-
mial of the form P(¢q, 01, ...,06) which demonstrates the algebraic dependence of the
secondary invariants. Several such algebraic dependence syzygies also appear in the
set of rewriting syzygies. Note that the computation of these algebraic dependence
syzygies is difficult, and several such syzygies have thusfar defied computation. With
the algorithms used, the relevant Grobner basis calculation may consume all available
core memory (8Gb) in the span of a few days.
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5.1. Triclinic groups C; and C;. The group C; contains no symmetry op-
erations aside from the identity E. The group C; contains only the identity and a
center of inversion. With respect to the action of these groups on the Cauchy tensor
components, the groups are therefore identical. Since no Cauchy tensor components
are mixed by the action of these groups, there are no nontrivial Reynolds projections.
The basis for these groups consists of the Cauchy tensor components, all primary
invariants.

0, = Cs (5.1)
0y = Cs (5.2)
05 = Cy (5.3)
04 = Cs (5.4)
05 = Cy (5.5)
06 = C1. (5.6)

5.2. Monoclinic groups Cs, C3, Cy;,. A single secondary invariant exists for
this group. An invariant basis is:

0, = Cy (5.7)
0y = Cs (5.8)
03 = Co (5.9)
0y = Cy (5.10)
05 = C? (5.11)
O = C? (5.12)
¢1 = C5C5. (5.13)

5.3. Orthorhombic groups Cs,, D3, Ds,. A single secondary invariant of
degree 3 exists,

0, = Cs (5.14)
0y = Cs (5.15)
03 = C4 (5.16)
0y =C2 (5.17)
05 = C? (5.18)
s = C? (5.19)
$1 = C4C5Cs. (5.20)
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5.4. Tetragonal groups Sy, Cy, Cy,. An invariant basis obeying the Molien

factorization of Table 4.2 is

th = Cs
0y =C1 + Csy
3 = C2
01=Ci+C3
05 = CF + C3
05 =Ci+Cs5

¢1 = (C1 — C2)Cs
¢2 = (CF — C2)Co
@3 = C4Cs5C

b1 = CLC2 + C,C2
¢5 = (C1 — C2)CyCs
¢6 = CaC5(CF — C2)
71 = P304.

5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33

AN N N N N N N N N N N N
N N Y T N D N N N

5.5. Tetragonal groups Dsy, Cyyy D4, Dyp. The invariant relations for these

groups are also relatively simple:

01 =C;s

0y =C1 + Cy

03 = C?

04 = C? 4+ C?

05 = Ci + C3

06 = Ci + Cs

91 = C4C5Cs

by = C1C% + C,C?2
¢3 = P102.

5.6. Cubic groups 7', T}, and groups 1y, O, Oy,

. Group Ty is subset of group

T: they share the same primary invariants, and several secondary invariants. Those
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secondary invariants found in group 7" but absent from T} are denoted by an asterisk:

61 =C1 + Cs + Cs (5.43)
0y =C; +C2+C3 (5.44)
03 =C; +C3+C3 (5.45)
04 = C4C5Cs (5.46)
05 = C? + C3 + C3 (5.47)
06 = Ci +Cs + Cy (5.48)
¢1 = C1C; + C2CE + C5C3 (5.49)
¢2 = ¢7 (5.50)
¢3 = o} (5.51)
(%) ¢s = C1C§ + C2CF + C5C3 (5.52)
()¢5 = ¢} (5.53)
(x) @6 =CiCs+ C103 + CoC3 (5.54)
¢7 = CiC; + C3C2 + C3C3 (5.55)
(*) ¢s = CiC3 + C3C3 + C3C3 (5.56)
po = C1C} + C2C3 + C3Cy (5.57)
(*)  d10 = C1CICE + C.CCF + C3C2CF (5.58)
(*) ¢ = CiC2 + C3CE + C2Cy. (5.59)

It is interesting to note that the groups T and Ty share the same primary invariants.
Consider (A.62), an algebraic dependence syzygy for ¢4, which occurs in T but not
Ty. The coefficients of ¢J*, m € (0,6), in (A.62) are expressed in terms of 6, and
therefore the coefficients are invariant with respect to both T" and T;. However, the
roots of this syzygy are not invariant. In T the roots ¢ of (A.62) describe an orbit of
size 6 under the action of the reflection symmetry operations found in 7' but not in
T,.

5.7. Trigonal groups C5, Sg. An invariant basis is

0, = Cs (5.60)
Oy = C1 + Cq (5.61)
03 = (C1 — Cy)* +C2 (5.62)
0, =C; +C2 (5.63)
05 = Co — 3Cs(Cy — Cq)? (5.64)
0 = C5(C2 — 3C3) (5.65)
¢1 = C4(C1 — Co) + C5Cs (5.66)
¢2 = &} (5.67)
¢3 = ¢} (5.68)
¢4 = C5(C1 — C2) — CyCp (5.69)

¢5 = C5(C — Co)% + 2C4Cs(Cy — Cy)
—C5C? (5.70)
p6 = 2C4,C5(Cy — Cy) + Cs(C3 — C2) (5.71)
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¢7 = Ca(Cr — Cz)* = 2C5C6(Cy — Cs)
—C4C?
pg = (C1 — C)(C? — C2) — 2C4C5Cs
g9 = Ca(CY — 3C3)
$10 = (C1 — C2)*(3Cy + Cs)
—Cg(Cy — 5Cy)
11 = P104.

5.8. Trigonal groups Cj,, D3, D3g. An invariant basis is

0, = Cs

0y =C1 + Cs

03 = (C, — Cy)? +C2
0y =C3;+Cz

05 = Ca(C2 — 3C2)
O = (Cl — 02)2(301 + 02) — Cg(Cl — 502)
¢1 = Cy(Cy — C2) + C5C5

¢2 = $7

¢3 = ¢}

¢y = C4(Cy — C2)* — 2C5C6(Cy — Co)
—~C4C?

b5 = (C1 — C2)(C3 — C2) — 204,C5Cs.

5.9. Hexagonal groups Cjsp, Cg, and Cgp. An invariant basis is

01 =0C3

0y =C1 + Cs

05 = (C1 — C2)* + C§
0, =C3+C2

05 = C3 — 3Cs(Cy — Cq)?
s = 9CS +45C4C2 +15C3C3 + 11C¢
¢1 = 2C4C5(Cy — Cs) + C6(CF — CF)
¢2 = ¢
b3 = ¢}
ba = (C1 — C2)(C2 — C2) — 2C4C5Cy
b5 = (Cy — C2)%(3C + Cy)
—C3(Cy — 5Cy)
¢6 = (3CF + CF)(C1 — Ca)?
+4C4C5C6(Cy — Co) + CE(CT + 3C2)
o7 = (C1C5 — C2C5 — C4Cs) %
(CLCy — CCy + C5C)

15
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Pg = 40405(01 — Cg)(SCL% + Cg)

+C6(3C3 + 6C3CE — 5C%) (5.101)
P9 = 8C4LC3Cs — (Cy — Cy) x
(3C] —6C3C2 — ) (5.102)
p10 = 4C4C3(Cy — C)? — 4C,C3C2
—(C1 = Cy) x
(3C1Cs — 6C3C2Cs — C3Cs) (5.103)
p11 = —C4C5(CF — 3C2)(3CF — C2). (5.104)

5.10. Hexagonal groups Dsp, Cg,, Dg, Dgp. An invariant basis for these
groups is

0, = Cs (5.105)
0y = C1 + Oy (5.106)
03 = (C1 — C2)* + C¢ (5.107)
0,=C;+C2 (5.108)
05 = (C1 — C2)%(3C, + Cy) — C2(Cy — 5Cy) (5.109)
06 = 9CS +45C{C2 +15C3C3 + 11C¢ (5.110)
b1 = (C1 — C2)(C3 — C2) — 204C5Cs (5.111)
¢2 = o} (5.112)
¢3 = ¢} (5.113)
by = (C1 — C2)%(3C% + C2) + 4C4C5C5 x

(C1 — Cy) + C2(C3 4 3C%) (5.114)
$s = 8C4C23Cs — (C) — Cy) x

(30 —6C2C2 — C3). (5.115)

6. Conclusions. The invariant bases presented above agree with those pre-
sented by Smith and Rivlin [20], and are identical in the sense that they generate
the same ideal. In many cases the particular form of the invariants differs. This
has no significance, and is merely an artifact of the particular methods used. For
example, in the group T the invariants K presented by Smith and Rivlin are related
to the invariants 6 and ¢ in (5.43-5.59) via 6; = Ki, 03 = Ky, 03 = K? — 2K,
0y = Ko, 05 = K} — 3K1Ky + 3K3, 0 = K? — 2K5, ¢1 = K1 K4 — K7 — K,
¢s = Ks, ¢ = K1Ko — K9 — 3K3, ¢7 = KiKy, — K1 K7 — K1Kg + K12 — KoKy,
¢s = K1Kg — KoKy + Kis, ¢9g = K1 K7 — K4Kg — K4K7 — K1 K5 + K11, ¢10 = Kia,
and ¢11 = K4K5 — K10 — SKG (Wlth KO = \/76 = 040506)- By writing the Ks in
terms of fs and ¢s, it is apparent by inspection that K1, Ky, Ko, Ko, K3 and K5 form
an HSOP, and a set of primary invariants of minimal degree indicated in Table 4.2.
Likewise K7, Kg, K9, K12, K13, K11, K14, and K7 are valid secondary invariants.
To make a complete set of secondary invariants, one could include both K2 and K2
of degree 6, and one of K2 or K3 of degree 9.

The following truncated series display the difference between the Hilbert series
implied by the Smith and Rivlin integrity bases, and the invariants deduced above in
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their Molien form. The Smith and Rivlin results differ beginning with fourth-degree
(in C) polynomials.

Co: 2 +42° 4132043227 +712° +1402° +2592"0 + 44821 4742212 + . (6.1)
Cov: 2°432" 49254202 4422"0 4782 +1392" + .. (6.2)
Syt 22°482° 4322548027 +1942°4+4042" 480820 + 14882 +
26632" +... (6.3)
Dog: 22°442"4+122°4+242° +502"° +882" 1 +1572" 4. (6.4)
T: 42641027 4272°+632° +1262'°+2392" +4392"% 4 .. (6.5)
Ty: 2 +32°+62"4+142'04262" +472"2 4 .. (6.6)

Cs: 24 4+142°+532°+13627 +3412% +7502° + 1485210 + 285621 +

52062"2 +... (6.7)
Cav i 22°+72°41827 +432°+902° +1702'°4+3082" +5282" + ... (6.8)
Cap : 42041427 +412° +1002° +-2122"° + 4142 +7672" + .. (6.9)
Dap : 2" +42°4102° +232"0 4452"1 4832 + ... (6.10)

Acknowledgments. I thank B. Sturmfels and M. Rashid for helpful comments.
This work was sponsored by the US Department of Energy (DOE) Mathematical,
Information, and Computing Sciences Division contracts DE-AC03-76SF00098 and
DE-FG02-03ER25579.

Appendix A. Syzygies.
The invariant basis for the triclinic groups C; and C; contain no secondary in-
variants, hence no syzygies.

A.1. Monoclinic groups Cy, Cy, Cy,. This syzygy is a rewriting expression,
and also displays the algebraic dependence of the secondary invariant upon the HSOP.

¢ = 050 (A1)
A.2. Orthorhombic groups Cs,, D2, Do,. An obvious syzygy exists
¢7 = 040505 (A.2)

which is a rewriting expression and displays the algebraic dependence.

A.3. Tetragonal groups Sy, Cy, Cy. Again, the algebraic dependence syzy-
gies are included in the set of rewriting syzygies. Rewriting syzygies for ¢7¢, are
omitted since they may be simply constructed by rewriting ¢3(dapa) or ¢4(P3da).

¢ = — 0303 — 265] (A3)
D192 = — 020504 + 20394 (A.4)
P1¢3 = O3¢5 (A.5)
Dios= s0aban— 3 65— 205) 0 (A.6)
15 = — (03 — 265] ¢ (A7)
D106 = — 020403 + 297 (A.8)

¢ = — 0563 — 266] (A9)
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¢2¢3 - 93¢6 (AlO)
Grvs= — 5 [0~ 206) 61 + 32040 (A11)
a5 = D106
= — 020403 + 2¢7 (A.12)
b206 = — [07 — 266] ¢ (A.13)
93 = %93 [6F — 66] (A.14)
P304 = b7 (A.15)
bas = % [0 — 05 1 (A.16)
G35 = % [0 — 05] 62 (A.17)
&= %[egeﬁ 16205 — 20565] + 02604 (A.18)
Bads = s0abs0s— 3 65— 205) (A.19)
Bads = — 3 67— 206 65 + 32040 (A.20)
(bg = — %[9392 — 9%96 — 29295 + 29596} (A.Ql)
Gobo = — L0oBa[6% — O] + [0 — 0] 0 (A.22)
¢ = *%Wﬁ*3%%+2%] (A.23)

A.4. Tetragonal groups Dsyy, Cyy, Dy, Dyp. Algebraic dependence syzygies
coincide with the rewriting syzygies for these groups

¢ = L0s[6% 0o (A.24)

1
03 = — 5 (0305 + 6305 — 20506 + 02042 (A.25)

A.5. Cubic groups T, Ty, and groups Ty, O, Op. The rewriting syzygies
for this group are complicated, and do not contain all algebraic dependence syzygies.
Note that the rewriting syzygies for invariants of group Ty are expressed in terms of
primaries @ and only those secondary invariants of group T}.
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of = % (20165 — 7616305 — 12010207 + 30105 — 10070505
+28607030305 + 54070260507 — 12020502 + 146,050
—36616030505 — 1086016020305 + 18010505 — 66565 + 15030305
+54020307 — 90305 ] — 1—18 (20705 — 12676206 — 186763
—210,0505 + 5101020305 + 108010307 + 2160505 — 45020506
—1620305]¢1 — % (1967605 + 150706 + 150505 — 450306 | 2

4 1
+3010203 — ¢ (07 — 303] [565 — 90206 — 5403 7
1
+15 207 — 90105 + 905 [03 — 306] po
1
P14 = ~2 (0705 + 6706 + 0305 — 30505] + 010201 — b2 + 010204 — ¢s
1 1 1
$106 = — =02 (0705 + 303 — 40105] + 3 (20105 — 305] 1 + 3 (0165
1 1 1
=305 ¢4 + 5010205 — Z[07 — 305] @7 — S [6F — 30s] s
1 3 2 2 1 2
P17 = g [9106 + 010505 — 4010560 — 0505 + 39506] — 59192¢1
2 1 1,
+§91¢2 + §9192¢7 ~ % [67 — 305] oo
1 1
D198 = *391 [9%95 + 39%96 + 39593 - 79396} + 692 [39% + 93}(}51
2 1 2 1
—501(152 + 692 [307 — 03] ¢4 — 591¢5 35 05 — 306] b6
1 1
+3010208 — & [6F — 303] 10
% (0765 — 670206 — 60707 — 0305 + 020306 + 180305
1 2 1 1
7591959251 + §92¢2 ~ 5 (05 — 306] 7 + 591926159

D109 =

$rdb10 = 71—1292 [0 + 6] [02 — 66] - 1—1292 (0203 — 6205 + 6305
~0305] + 01 (63 — 0] 61 + 01 [63 — 06 s — <005
— 263 — 3606] 65 + 36102610 — < [6F — 3046

P11 = —010207 + %02 [65 — 206] p1 — %[03 — 0206 — 1863 ] 4
~ 2 (68— 305] s — 565 — 30] 10 + 50162011

¢4 = i (0305 + 0706 + 0305 — 30306] 1 — 010202 + b3
— (6363 + 6200 + 6305 — 3050661 + 016265
bage = féag (0705 — 303 + 20105] — %[0193 — 305)¢1 + %9193@

1 1 1
+§0192¢6 + 3 [9% — 30s] 7 + 8 [9% — 30s]¢s

19

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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Qa7 = *1—12

Dapg =

Papg =

Padpr0 =

bap11 =

Pepr =

Peps =

D69
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(0705 + 30706 + 5010505 — 13010306 — 20505 + 60506]
+102 (307 — 03] é1 — %91@ + %02 [30F + 03] s — %01(155
[02 306) d6 + %0192@ - é[af — 303] p10

5 0305 + 0766 — 910503 — 5010306 — 20505 + 60505]
éag 67 — 30) 1 — =02[67 — 93]¢>4 + 291(155

+;0192¢8 +1 (o3 393}@ 41 [01 ~ 305] o

—%02 (36205 + 26205 — 56565] + gel [62 + 0] 61 — §92¢2
+%01 05 + 206] s — %92(155 + é[aé — 306 ] ¢

508 = 305] 65 + 50160200 — £ [6F — 3031

— 26203 — 3603 — 030265 — 6305 + 6260505 + 9665

+391 65 — 96]¢>1 - —929252 + 91 (05 — 06] s — éw% — 306 ] p7

1
+39192¢10 + = [91 — 30s] 11

1 1
-0 (05 — 20506 — 80203 + 03] + 3 (05 — 20206 — 903 ¢

1
+31

1 1
+5 (05 — 306 | d10 + 30102611

03 — 0206 — 96361 — 7 [63 — 36c] 6o

i [0 — 90103 + 80705 + 270703 — 48010505 — 303
+24602] + 0105 — 05] ¢
%92 (07 — 60705 + 80705 + 0105 — 40305] — 1—12 (01 — 60765
05+ 80105] 61 — = [0 — 66305 + 80165 + 03] 61 + 502055
+%0193¢7 - %[0103 — 305] ¢s
—1—1292 (67 — 03] (07 — 56105 + 805] + é (07 + 63 — 60705
+89195}¢1 + 5 [0 — 603605 + 80105 + 639 + 2 0:0ag

[9193 - 395]¢7 +3 [29193 — 305 ps

= % (0165 — 6705 — 6070505 + 18010505 + 6610505 — 90503

~96306] — 56267 — 66165 + 9051 — < [6% — 3656

302 [0105 — 305)94 — 5 63— 304]65 + 616066

1 2 1
—502[07 — 305 o — 562[07 — 305] 65 + 561

1
+5 (201 — 90105 + 905] d10

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)



P60 = ——=

Pep11 =

Prdpg =

D79 = 71_18

P70 = —
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1

0103 — 30105 + 305 [0 — 96} + 56:[208 — 90105

18

+995} b1 — i [01 393} b2 + [01 393} ¢s

+261[63 — 0] 66 + 6207 - 393}¢7 L 0,107 - 305) s

§ [201 — 90,605 + 995} ¢9 - § [0:1)’ — 96,65 + 995} 92510

i (0763 — 3070206 — 120705 — 9610305 + 1501020506

+7201030% + 80305 — 12020506 — 720305) + é[efaé

1 1 1
+0%96 + 9393 — 39396} o1 — —9192(152 + §¢3 + 1 [9:23

—0206 — 607 6 + = [0193 — 5] o1

& (0165 + 026305 — 1620406 + 20,050, — 636 + aéae]

1

—30 67 — 0105 + 205] 61 + = [302 — 03] ¢2 + 9293¢>7

7% (61605 — 305]

’i (0165 + 56106 + 6070505 — 186070305 — 4610305
+4610506 + 0505 + 50306] + %92 (03 — 05] 1 — % (367
~05]62 + 502 [0 — 0564 — é[:se% — 05) s + %9293@
+%0293¢8 - %[0103 — 305] ¢10

(0363 — 8010505 + 2001020306

— 5050206 — 60502

36010503 — 13020506 -+ 6305 — 546365] — < [2063

7 1
+30705 + 30305 — 39396]¢1 + §9192¢2 - §¢3
1 1
—50 05 — 606] 7 — e (07 — 605] o

(30305 — 670206 + 1207607 + 010505 — 70102050 + 46505

7_
1 1 1
5 (76205 — 96305 + 36105 — 960306 61 — 010262 + s

2 1
+—2 (3607 — 03] [03 — 0] pa — 00205 — o5 (05 — 0206

—1803] ¢ + éal [03 — 06] 7 — %01 (03 — 306 ] ps — 1 02 [67

1 1
30369 — 502 [0 — 903] h10 — 510105 395]¢11

21

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)
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1
G711 = T

P89 =

1
PsP1o = 7

Pgp11 = *L

+99396} + = 0102 [9 306] d)l [ 306] d)g — L [9% — 396] ¢5

PoP10 =
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(0765 — 4676305 + 30705 — 305605 + 12030306 + 36020303
—90305] + éalag (05 — 306] p1 + %8 05 — 306] p2 + %[93
—306] ¢5 + %93% — %8 [505 — 90206 — 5463 s

~ 56108 — 305) 60 — 201[65 — 30 ] g0 + 50265011

% (0106 + 2070305 — 5070505 — 3010505 + 5010505 — 0563
+6306] — %92 (0105 — 395]¢1 - 192 (03 — 95]¢>4 + = [392
—03]¢5 + §9293¢8 + = [0193 —305) o + = [9193 —305] p10
5 (0365 — 126767 — 27670205 — 13610503 + 4301020306
—40305] + i [70?95 - 0503 + 70706 — 50306) d1
7—9192@ + ¢3 I [391 — 03] [62 + 06 s — golem
— < [363 — 76265 - 1894]¢6 + 501[63 — 30] 61 + 5016365
%0293@ - éag [0 — 303] P10 — %[9193 —305]d11

(0305 + 070206 + 120705 + 19010505 — 2501020506
—144910303 — 200505 + 246020505 + 2160305

7
72 [179102 150366 + 96563 — 39396} o1 = 15010202

+6¢3+ [92 0206 — 1803 ] p6 — =01 [05 — 306 ] 7
1
6

01[05 — 0] ds + — 0207 — 393}(159 + §9293¢10

8

1
t5 [6103 — 365 ] P11

[9%9;‘ — 4070206 + 30702 + 90505 — 18030505 — 720260503

+—8 (5605 — 90205 — 5467 ] b7 + 13 [792 — 96205 — 5404} bs
1

—591 [92 — 396]¢9 + 591 [92 — 396}¢10 + §9293¢11

E [9%0596 - 9203 — 030506 + 6929392 + 0305 ] — 291 6206

+3e4}¢1 + = [3492 — 06 2 — = [3492 — 70206 — 1803] 7
29,0

+3 1069

—i (0765 — 12670205 — 0767 + 0505 + 12020505 — 0367]
1 1 1

30105 — 620 — 663164 — < [05 + 05] 65 — < [0 — 26260

—9603 | ¢s + égl (03 — 06] do + %9196(1510 - égz (07 — 305] P11

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)
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1 1
Pop11 = *59195(93 —06) + D [393 — 803606 — 120203 + 92]61)1

1 1
5 [0396 — 60,07 — 92}(]54 + §0206¢9

1 1
— 5 [303 — 70206 — 1863) 610 + 20106611 (A.58)
1
P2 = -5 (120702603 + 0305 — 2050305 — 120260503 + 036 |

1 1
+2010361 — 5 (03 — 0] d2 + 20103 ps — 6 (05 — 66] 5

2 [0 020 — 186%] 6r + 7 [03 — 0205 — 1563] s
%01 [62 — 6] o (A.59)
bro¢ = —%0193 (05 — 06] — % [05 — 240205 — 03] 1 — % 65
26205 — 120,67 + 0] s + %[03 — 026 — 186%] o
% [63 — 6205 — 963 ] p10 + éel 03 — 05] p11 (A.60)
¢ = —é [65 — 30365 — 160303 + 36302 + 2465636 + 7265 — 03]
% [05 — 0206 — 603 ] P11 (A.61)

Algebraic dependence syzygies for ¢g and ¢11 are given by the rewriting syzygies.
For the other secondary invariants, the algebraic syzygies are higher order polynomial
expressions. A representative algebraic dependence syzygy for ¢4 is:

0= [065 — 12070507 — 36760305 — 3607020706 + 360705 — 60705 — 3616503
—12016030306 + 3601050502 + 901020307 + 2520102050205 — 32407050
+540710305 + 4030505 — 2403050205 + 1205030502 — 21605 02030506
—48030505 — 9026502 + 3602030205 + 3607030202 + 2702020202
—324070,030206 + 972020207 — 126050305 + 1201050305 — 246105050505
—21661 05050705 — 1080103050505 + 64861 0203070506 + 216016030505
—90563 + 405602 + 36050506 — 360360205 + 180056503
—45030505 + 108030207 — 32402050706 — 972053607 + 180505
—1086305] — [120765 — 24076050 — 144670307 — 36070205 — 144670305
—60030505 + 50405030303 + 25205 020307 + 108003 050205 + 60076505
—4807050505 — 64803030305 — 10807020505 — 64807030505 — 72010505
+360010530306 + 64801050307 — 432601020305 — 19440, 030305 + 60050305
—28805030506 — 64805050705 + 32402050505 + 194405070505 ha
+6[50165 — 300160505 — 96010203 — 30165 — 54070505 + 10867630305
+43207020507 + 18070302 + 40010505 — 7201050506 — 432016020205
—30505 + 180503506 — 270304 | o3 + 48[20765 + 6670206 + 126763
+9010505 — 2101020305 — 54010307 — 50505 + 9020506 + 540305
—144[363603 + 6305 + 0365 — 30305 p1 + 576010205 — 28865

(A.62)
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A.6. Trigonal groups C5, Sg. The rewriting syzygies are

1 1 5
(z)il = —10302 + 50506¢1 + 10304¢2

+£9396¢5 + 39495%’ (A.63)
P194 = d11 (A.64)
195 = —%9495 + %93¢6 (A.65)
P106 = _%9396 + %94(155 (A.66)
G161 = ~0afsfs + S5 + T 0so (A.67)
198 = %949257 + %939259 (A.68)
$199 = 01 + ba9s (A.69)
G110 = 2020301 — 0504 + O3¢07 (A.70)
¢7 = 0305 — o (A.71)
Paps = —020304 — %93% + %94%0 (A.72)
Page = %94¢7 - %93% (A.73)
a7 = +%9495 + %93¢6 (A.74)
Das = — 50t — 30a05 (A75)
Padg = =61 — 0106 (A.76)
a0 = 0501 + 2020504 + O3¢5 (A.77)
¢3 = 0304 — 0305 — 05056 (A.78)
¢s506 = 0506 + 2030401 — 2¢3 (A.79)
P57 = =058 + 03011 (A.80)
Bsbs = babsfo — 50s0a6s — 30509
_%96¢10 (A.81)
Ps5¢9 = =67 — 204011 (A.82)
G510 = 0304 + 2020305 — 0507 (A.83)
G = 0307 — 02 — 55 (A.84)
P67 = 020306 + %9394@1 - %955259
*%9641)10 (A.85)
Pegps = =07 — 0111 (A.86)
Pedo = =034 — Oss (A.87)
P10 = 2020306 — 0505 + 203011 (A.88)
¢ = O30 + 0506 (A.89)
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7 = —0505 — 030401 + 2¢3 ( )
Grdg = —0363 + 20402 + O s ( )
G110 = 031 + 2020307 + 0505 ( )
¢ = Oagpa + 10605 ( )
Psg = 0101 + Os6 (A.94)
P30 = —0304 + 20302 + 050 + 2020305 ( )
¢ = [67 — 03] (A.96)
Podr0 = —0505 — 3030401 + 4d3 + 2020309 ( )
$To = —[405605 — 03 + 03] + 40203¢10. ( )

A.7. Trigonal groups C3,, D3, D3g. The rewriting syzygies for these groups
are

1 1
o1 = —19392 — 595 (20263 — 05] 1

) 1
+0304¢2 — 76030504
1
+194 20205 — 5] ¢ (A.99)
1 1
164 = —504[20205 — 6] + 56305 (A.100)

6165 = 0385 + 5030 (A.101)
@5 = 0304 — O3¢5 + (05 — 20203)p5 ( )
Gadps = —05 20203 — O] + 203041 — 2¢3 (A.103)
@2 = 0303 — 0102 + O564. ( )

A.8. Hexagonal groups Cj;, Cs, and Cgp. The rewriting syzygies are

1 1
o1 = —19394 [2167 — 265] + 505 (863

5 1 ,
—0s| 1 + 19392@ + 403 [1063

1
—0s] ¢ + 7030505 (A.105)
194 = 20497 — 10 (A.106)
G195 = 2020301 — 0504 + 20597 (A.107)
1 1
196 = —59295 + 593¢8 (A.108)
1 1 1
P1¢7 = —5929393 + 5030104 + 192%
1
+ 0309 (A.109)

4
1 1
drdg = —593 (12603 — 06 + 40402 + 592% (A.110)
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19 = =307 + 204010 + 03611
1 3
P1910 = —59293 (12603 — 06] + 19392¢4

1 1
+7 (12603 — 06 5 + 59394%

1
—=6
) 5¢11

1 . 1
G111 = > [1263 — 06] p4 + 592%

¢; = 0303 — oo
baps = —20304 + 0501 + 2020364 + 0306

1
paps = —020507 + 030404 + 592%
1
_Zp.
5 3¢9

1 1
a7 = 19395 — 030401 + 193%
bas = 9057 — 404010 — 3011
1 1
Qa9 = —593 (1203 — 06] + 20402 — 5@%%

1 1
Padio = 59295 — 3030501 + ¢3 + 59394%

Pag11 = —% (603 — 0] 1 — %9@58
¢F = —[46202 — 03 + 02] + 4020505

G55 = —4020304 + 0204 + 2030405
2000566 — 20567

Butr = ~0sas + S0 + 5050
1205037

P58 = —6040504 + 12030407 + 2020305
—05¢9 — 203010

P50 = 30307 — 6040501 + 20302
—260304¢6 + 0505 + 2620309

3
P5h10 = —5939295 + 3030401 — 0562
1
+0405¢06 — §9§¢8 + 260203010

1 3
Gs5p11 = —595 (1063 — 5] — 59392% + 2¢3
+20203011
% = —3030% + 4040501 — O3
+4030496 — 0593

(A.111)

(A.112)

(A.113)

(A.114)
(A.115)

(A.116)

(A.117)
(A.118)
(A.119)

(A.120)

(A.121)
(A.122)

(A.123)

(A.124)
(A.125)

(A.126)

(A.127)

(A.128)

(A.129)
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pePr =

PoPs =

PePg =

PeP10 =

D611 =

¢ =
Qrdg =

P79 =

P10 =

P11 =

Pgpg =

P80 =

1
—040504 + 3030407 — 5955259

1
- 593%0
05863 — 0] — 60307 ¢1 — 293
+46030405

3
0505[12603 — 05] + 59392(;54

1
-3 (1203 — 0] b5 + 3030469
705(72511
3 2 3 2
—59495% + 59394% — 040509
1
+0304¢10 + §9§¢11

—[1263 — 06] ¢7 + 05010
+203504011

1 1
—040501 + 193¢2 + 195¢8
1 9
502603 [667 — 05] + 030504
1 1
-1 (607 — 06] b5 + 030409 — 5050
1 3
_595 [1192 - 96} + 59392(1)1
1
+¢3 — 59394¢8
1 9
5031205 — 06] — 5030501
2 030us — ~030265 + ~0:050
5030402 — 203056 + 5040505

1
— 70304 [210F — 206]

%92@ + 2[1002 — 06] s
—050,[2763 — 26;]
+1503¢2 — [665 — 06] b6
—2[1865 — 0] d7 + 963010
+60304¢11

1 1 .

— 5020304 [2763 — 266] + 505 (1863
1 ,

—0s) s + 704 [2763 — 205] s

9
+19392¢9 — 30405011

27

(A.130)

(A.131)

(A.132)

(A.133)

(A.134)
(A.135)

(A.136)

(A.137)

(A.138)

(A.139)

(A.140)

(A.141)

(A.142)
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1
PsP11 = 594 (2763 — 265] ¢4

*% (663 — 66] ¥
@5 = —30502 + 1205 — 65] o6
Podro = —39495 [450% — 46] + %93 (1863
~06] 61 — 304036
o1l = —%94 [276% — 206] 1
+% (1263 — 06 b5
¢l = 39394 (4503 — 465 — %95 (18673
—0]p1 + 29392@ — %93 (1263
—0s) 6 + %9395%
Prop11 = —%9392 [5463 — 506] + % (1263
—bs) 2 + 394 [2163 — 265] 6

1
o7 = -7 (9965 — 200305 + 63

(A.143)
(A.144)

(A.145)

(A.146)

(A.147)

(A.148)

(A.149)

A.9. Hexagonal groups D3, Csys Dg, Dgp. The rewriting syzygies are

1 1 ,
o1 = 7 [190305 — 2030405] — 5[22020503
—116365 — 2020505 + 0506 o1

5 1 .
+19392¢2 — 10 (1063 — 5] 4

1
*192 (20203 — 05] 5
1
P1ds = [—020567; + 59295} + 030401
1
*5939255
1 1
d105 = [—4630% + 59396] — 20492 — §9i¢4
¢ = —36303 +204[26205 — 65] 61
—03¢3 + 4030404 + 20203 — 05| 05
P15 = (22020505 — 2020305 — 110305 + 0506

+2¢3 + 3030465
¢z = —3050% + 3052 + [1263 — 05 ¢4

(A.150)

(A.151)

(A.152)

(A.153)

(A.154)
(A.155)



[1]
2]

[3]

9
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]
21]
22]
[23]

[24]
[25]
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